The Utilization of Infrared Chemical Imaging for the Detection and Enhancement of Latent Fingermarks

Image

One of the main goals of criminal and civil investigations is to find people, especially victims and suspects, as well as the owners of various items and the authors of relevant papers. Fingerprint matching is one of the most well-known and frequently used methods of personal identification. A layer of corrugated skin covers the palmer surface of the hands to improve grip and prevent slippage. These elevations on the palmer surfaces are called friction ridges, and the troughs that form between the ridges are called furrows or grooves. The study of friction ridge structures, such as fingerprints, is known as dactyloscopy, and ridgeology is the study of ridge analysis for fingerprint research. Pore openings that let sweat out are scattered throughout the friction ridges. Most of the sweat is water with very trace amounts of salt chloride, organic acids urea, and albumin.

A fingerprint is an imprint that a human finger's friction ridges leave behind. If the two fingerprints are those of the person in issue, it is unquestionably possible to identify them. Fingerprint evidence is crucial for personal identification. A distinct pattern allows for fingerprint identification. However, only the patterns do not cause it. The pattern and the ridge details, or minutiae, work together to produce fingerprint identification.

The traces of an impression from the friction ridges on any surface of a human or other primate hand are called fingerprints. Friction ridges may also be seen as a print from the foot's sole. Since criminals frequently touch or handle objects when they enter a crime scene, many of their fingerprints are sure to be left there unintentionally. "Chance prints" are the kind of fingerprints the offender left at the crime scene. A person may occasionally pick up a glass or plastic bottle with his hand and place it in a different location. The superglue method is a great way to create latent fingerprints. It is one of the greatest ways to gather one of the most significant kinds of physical evidence. It can be used as the main technique for creating latent fingerprints. A visible, sticky white substance that appears along the ridges of the fingerprint is created when superglue reacts with the latent fingerprint's protein, lipid acid, and amino acid traces as well as the moisture in the air. An image of the full latent fingerprint is the outcome.

Our initial experiments in this area were completed to document the impact of lowering the temperature of the superglue fuming process on the growth of poly(ethyl cyanoacrylate) from aged latent prints. These results show that lowering the temperature does improve the polymerization of ECA when applied to aged prints as it does to fresh prints. Notably the molecular weight of the grown polymer approaches that which is found in un-aged fumed prints, indicating that the change in initiation and chain growth with temperature is similar for aged and un-aged print and is not affected by degradation or loss of mass of a print during aging. These results therefore suggest that lowering the temperature may improve the quality of the aged print.